

Plant Archives

Journal homepage: http://www.plantarchives.org DOI Url: https://doi.org/10.51470/PLANTARCHIVES.2025.v25.no.2.204

MANAGEMENT STRATEGIES AGAINST CHICKPEA WILT CAUSED BY FUSARIUM OXYSPORUM F. SP. CICERI THROUGH DIFFERENT PLANT-EXTRACTS, BIO-AGENTS AND FUNGICIDES

Pempee, Mateti Gayithri* and Mahabeer Singh

Sri Karan Narendra Agriculture University, Jobner, Jaipur (Raj.) 303328, India *Corresponding author: pandumateti1996@gmail.com (Date of Receiving : 18-07-2025; Date of Acceptance : 03-10-2025)

ABSTRACT

The present study was conducted to evaluate the efficacy of various plant extracts, bio-agents and fungicides against *Fusarium oxysporum* f. sp. *ciceri* causing chickpea wilt under *in vitro* and those plant extracts, bio-agents and fungicides which proved efficacious under *in vitro* were also evaluated by seed treatment (*in vivo*) in earthen pots. The extract of five plants was evaluated against *Fusarium oxysporum* f. sp. *ciceri* by poisoned food technique. Among these, the extract (10% concentration) of garlic and neem were found most promising in inhibiting mycelial growth. In dual culture plate technique, *Trichoderma harzianum* showed the highest inhibition of mycelial growth of the pathogen in comparison to *T. Asperellum, Bacillus subtilis* and *P. fluorescens*. Among six fungicides tested, Carbendazim and Thiram + carboxin were found most effective and at par in inhibiting mycelial growth of fungus followed by Propiconazole. Under pot culture experiment, seed treatment with Carbendazim was recorded minimum disease incidence (13.80%) followed by Thiram + carboxin (15.75%), *Trichoderma harzianum* (18.13%).

Keywords: Bioagents, fungicides, Fusarium oxysporum f. sp. ciceri, plant extracts.

Introduction

Chickpea (*Cicer arietinum* L.) also known as Bengal gram is one of the most important winter season pulse crops grown in India. It is a member of family *Fabaceae* and believed to be originated in South West Asia. Among the pulse crops, chickpea occupies a prominent place and popular due to high nutritional value, high yield potential and low cost of cultivation. It is rich source of proteins (21.1%), carbohydrates (61.5%) and fats (4.5%).

The production of chickpea in the Indian sub continent and in other Asian countries is severely affected by many plant pathogenic fungi, bacteria, viruses and nematodes which cause diseases such as Fusarium wilt, dry root rot, Ascochyta blight, collar rot, bacterial blight, filiform virusand root nematode. Chickpea wilt caused by *Fusarium oxysporum* f. sp. *ciceri* [(Padwick) Snyder and Hansen] is most widespread and important disease occurred throughout the world. *Fusarium oxysporum* f. sp. *ciceri* is mainly

soil borne and a facultative saprophyte. It can survive in the soil up to six years in the absence of susceptible host. The chickpea wilt plant at seedling stage did not exhibit any rotting on outer surface of the root. However, on splitting vertically from collar region downwards showed brown, black discoloration of internal tissues, while in adult stage the affected plants showed typical wilting *i.e.* drooping of leaflets, rachis and lamina. Affected plants when uprooted and splitted the root of the wilted plants exhibited more pronounced internal brown to black discoloration of the xylem vessels. The highest wilt incidence (45.88%) on chickpea in Mohangarh area of district Jaisalmer and minimum (27.43%) in Ahore area of district Jalore during 2011-12 and 2012-13.

Material and Methods

Laboratory experiment conducted to find out the fungitoxicity of above five plant extracts (Table 1) against the *Fusarium oxysporum* f. sp. *ciceri* by poisoned food technique. One-hundred-gram

leaves/cloves/rhizomes of each were collected and washed 2-3 times with water. Before extraction leaves/cloves/rhizomes of each plant (100 g) were crushed separately with 100 ml sterilized water. The extract was filtered through muslin cloth and centrifuged at 5000 rpm for 30 minute the effect of each plant extract was tested at two concentrations i.e. 5 and 10 per cent. The effect of plant extracts against mycelial growth of Fusarium oxysporum f. sp. ciceri were tested by Poisoned Food Technique. Required quantity of each plant extracts were mixed thoroughly in melted Potato Dextrose Agar, to get desired concentration, just before pouring in sterilized Petriplates and was allowed to solidify for 2-3 hours. Each plate was inoculated with 5 mm disc of 7 days of old culture of Fusarium oxysporum f. sp. ciceri with the help of sterilized cork borer. The inoculated Petriplates were incubated at $30\pm 1^{\circ}$ C for 7 days. A control was also maintained where medium was not supplemented with any of the plant extracts. The experiment was conducted in completely randomized design with three replications. Colony diameter was measured on 7th day of incubation.

The mycelia growth of the test fungus was recorded and per cent growth inhibition was calculated by Vincent's (1947) formula given below:

Per cent growth inhibition =
$$\frac{(C-T)}{C} \times 100$$

Whereas,

C=Diameter of the colony in check (Average of both diagonals)

T=Diameter of colony in treatment (Average of both diagonals)

Efficacy of bio-agents against mycelial growth of Fusarium oxysporum f. sp. ciceri (in vitro)

Screening of bio-agents was done by dual culture technique (Dennis and Webstar, 1971). All the bioagents were obtained from Department of Plant Pathology, S.K.N. College of Agriculture Jobner, Jaipur. In vitro efficacy of four bio-agents, viz. Trichoderma harzianum, T. asperellum, Pseudomonas fluorescens and Bacillus subtilis was tested using dual culture plate method and twenty ml of autoclaved Potato Dextrose Agar was poured into in each sterilized Petri-plates and allowed for solidification after 2-3 hours of pouring, these plates were inoculated with 5 mm diameter mycelial bit taken from 7 day old culture of Fusarium oxysporum f. sp. ciceri and antagonistic agents both were placed separately at equal distance on the periphery of Petri-plates. Potato

Dextrose Agar containing Petri-plates inoculated with pathogen alone served as check. Inoculated Petri-plates were incubated at 30±1°C in B.O.D. incubator for 7 days. Linear growth of pathogen as well as bio-agent was measured and per cent growth inhibition was recorded on 7th day of incubation.

Efficacy of fungicides against mycelial growth of Fusarium oxysporum f.sp. ciceri (in vitro)

Efficacy of six fungicides (Table 2) were tested against mycelial growth of Fusarium oxysporum f. sp. ciceri by Poisoned Food Technique. Required quantity of each fungicide was added aseptically to 100 ml of sterilized Potato Dextrose Agar medium in 150 ml flask separately so as to get concentration of 50, 200 and 500 ppm. The flasks were shaken several times to ensure proper and uniform distribution of the fungicides. The medium was poured separately in sterilized Petri-plates and allowed to solidify. For each treatment three replications were taken. Medium without fungicides served as check. Each plate was inoculated with 5 mm diameter mycelial bit of the fungus. Inoculated plates were incubated at 30±1°C for 7 days. The linear growth of test fungus was recorded and per cent growth inhibition was calculated by Vincent's (1947) formula.

Per cent growth inhibition =
$$\frac{C - T}{C} \times 100$$

Whereas,

C=Diameter of the colony in check (Average of both diagonals)

T=Diameter of colony in treatment (Average of both diagonals)

Efficacy of effective plant extracts, bio-agents and fungicides (*in vivo*)

Plant extracts, bio-agents and fungicides which proved efficacious in vitro were also evaluated by seed treatment (in vivo) in earthen pots as per following detail (Table 3). Prior to sowing, these pots were sterilized with copper sulphate solution and filled with sterilized soil + FYM (soil : FYM =3:1, sterilized at 1.045 kg/cm² for one hour for three consecutive days). These pots were inoculated with fungus inoculum multiplied on sorghum grains @ 20g/ pot. The pots were covered with polythene bags and kept for 24 hours in cage house. The seeds were tested separately with fungicides (1g/kg seed), plant extracts (10%) and bio-agents (4g/kg seeds). These treated seeds were separately sown in pots @ 15 seeds/pot with three replications. Surface sterilized seeds without plant extracts, bio-agents and fungicides sown in inoculated

sterilized soil served as check. The pots were watered as when required. All the pots were maintained under identical conditions. Observations on per cent disease incidence was recorded 45 day after sowing. The per cent disease incidence and per cent disease control were calculated as follows:

$$Per cent disease incidence = \frac{Number of wilted plants}{Total number of plants} \times 100$$

The per cent disease control (PDC) was also calculated by using the following formula:

Per cent disease control =
$$\frac{\text{Disease in control - Disease in treatment}}{\text{Disease in control}} \times 100$$

Result and Discussion

Efficacy of plant extracts against mycelial growth of Fusarium oxysporum f.sp. ciceri by Poisoned Food Technique (in vitro)

The efficacy of different five plant extracts at two concentrations viz., 5 and 10 per cent were tested against Fusarium oxysporum f. sp. ciceri in vitro condition by using Poisoned Food Technique. The data present in Table -4 show that all five plant extracts inhibit the fungal growth at two concentrations. Garlic clove gave complete inhibition of growth of Fusarium oxysporum f. sp. ciceri at 10 per cent concentration, and followed by neem extract at 10 per cent concentration gave (90.00%) inhibition of mycelial growth of pathogen. Ginger and turmeric at 10 per cent, garlic and neem at 5 per cent concentrations were found moderate inhibitor of mycelial growth of fungus. Turmeric at 5 per cent, datura at both concentrations were found least effective against fungus. As the concentration of plant extracts was increase the mycelial growth inhibition of fungus also increase and at 10 per cent maximum inhibition of mycelial growth was observed.

Plant extracts x concentration interaction was also found significant. Complete inhibition of mycelial growth of fungus was observed by garlic clove at 10 per cent concentration followed by neem extract at 10 per cent concentration. Minimum inhibition of mycelial growth of fungus was recorded by datura at 5 per cent (55.50 %) followed by datura at 10 per cent (61.10%) (Table -4, Fig.- 1 and Plate-1).

Our observations are in agreement with the findings of Verma and Dohroo (2003) who showed that garlic cloves extract resulted total inhibition of growth of *Fusarium oxysporum* f. sp *pisi*. Kamdi *et al.* (2012) also reported the effect of aqueous leaf extracts *Azadirachta indica* was found effective against

Fusarium oxysporum f.sp. ciceri followed by Lantana camara at 5% concentration.

Efficacy of bio-agents against mycelial growth of *Fusarium oxysporum* f.sp. *ciceri* by dual culture plate method (*in vitro*)

Antagonistic activity of Trichoderma harzianum, Trichoderma asperellum, Bacillus subtilis and Pseudomonas fluorescence were investigated in in vitro condition by using dual culture plate method on PDA medium. The result presented in Table -5 and plate-2 showed that all bio-agents were antagonistic to the Fusarium oxysporum f.sp. ciceri. Maximum inhibition of mycelial growth of fungus was recorded by Trichoderma harzianum (89.00%) followed by Trichoderma asperellum (84.75%). Trichoderma harzianum was found at par with T. asperellum. Minimum inhibition of mycelial growth of fungus was recorded by Bacillus subtilis (68.34%)Pseudomonas fluorescence (65.34%). Pseudomonas fluorescence was found least effective against pathogen (Table -5, Fig.- 2 and Plate-2).

Similar results have also been observed by Rani and Mane (2014) who tested the efficacy of two fungal bioagents viz., T. viride, T. harzianum and two bacterial bioagents viz., P. flurescens and B. subtilis against F. oxysporum f. sp. ciceri under in vitro conditions using dual culture technique. The highest per cent inhibition of growth was recorded by T. *harzianum* (76.66 %) followed by *B. subtilis* (63.14%). The lowest growth inhibition was observed in P. fluorescens (53.52%). This study is in agreement with the findings of Thaware et al. (2016 b) who reported efficacy of six fungal and two bacterial antagonists were evaluated in vitro against F. oxysporum f. sp. ciceri and reported that the Trichoderma viride recorded significantly highest mycelial growth inhibition (75.55%) followed by T. harzianum (73.77%), T. koningii (71.88%) and P. fluorescens (43.77%) respectively.

Efficacy of fungicides against mycelial growth of Fusarium oxysporum f.sp. ciceri by Poisoned Food Technique (in vitro)

The efficacy of different six fungicides at three concentrations *viz.* 50, 200 and 500 ppm were tested against *Fusarium oxysporum* f.sp. *ciceri* in *in vitro* condition by using Poisoned Food Technique. The result presented in Table -6, Fig. -3 and Plate-3 showed that all six fungicides inhibit the fungal growth at all three concentrations. Carbendazim, Thiram + carboxin both fungicides gave complete inhibition of growth of fungus at 50, 200 and 500 ppm concentrations, and

followed by Propiconazole (98.99%) at 500 ppm and Hexaconazole (95.50%) at 500 ppm concentration. Hexaconazole and Thiophanate methyl were found moderate inhibitor of mycelial growth of fungus at 200 and 500 ppm concentrations. Thiophanate methyl at 50 ppm, Chlorothalonil at 50 and 200 ppm concentration were found least effective against the pathogen. As the concentration of fungicides was increase the mycelial growth inhibition of fungus also increase and at 500 ppm maximum inhibition of mycelial growth was observed.

Fungicide x concentration interaction was also found significant. Complete inhibition of mycelial growth of fungus was observed by Carbendazim and Thiram + carboxin at all concentrations followed by Propiconazole and Hexaconazole at 500 ppm concentration. Minimum inhibition of mycelial growth of fungus was recorded by Chlorothalonil at 50ppm (47.70%) followed by Thiophanate methyl at 50ppm (52.20%) (Table -6, Fig. -3 and Plate-3).

Similar observations were also made by Raju et al. (2008) who found that Carbendazim completely inhibited the growth of Fusarium oxysporum f. sp. udum at all concentrations (100, 250, 500 ppm). Kumari et al. (2014) also observed four fungicides (Mancozeb, SAAF, Carbendazim and Cuprozin) in three different concentrations (0.01%, 0.02% and 0.03%) against F. oxysporum f. sp. cubense by Poison Food Techniques and reported that Carbendazim at all concentrations was found to be the most effective. Our observations are in agreement with the findings of Jat et al. (2017) who worked on different fungicides against Fusarium oxysporum causing coriander wilt, in which they found that Complete inhibition of the fungal growth i.e. 100% with Bavistin (Carbendazim) at 200 and 500 ppm followed by Companion (Carbendazim + Mancozeb), Topsin-M (Thiophanate methyl) and Vitavax (Carboxin + Thiram) at 500 ppm.

Efficacy of plant extracts, bio-agents and fungicides againstwilt of chickpea through seed treatment in pot conditions

Plant extracts, bio-agents and fungicides which were found effective in in vitro were also tested in pots through seed treatment against Fusarium oxysporum f.sp. ciceri and these were garlic, neem, Trichoderma harzianum, Trichoderma asperellum, Carbendazim and Thiram + carboxin. The results (Table- 7 and Fig.- 4) revealed that the all-plant extracts, bio- agents and fungicides were found significantly superior over control in reducing per cent disease incidence at 40 days after sowing. Minimum per cent disease incidence was recorded with Carbendazim (13.80%) followed by Thiram + carboxin (15.75%), *T. harzianum* (18.13%), garlic clove (20.00%), neem extract (24.80%) and T. asperellum (26.75 %) over control (62.25 %). Maximum disease control over check was recorded with Carbendazim (82.18%) followed by Thiram + carboxin (79.74%), T. harzianum (62.00%) and garlic clove extract (58.27%) over control at 40 days after sowing.

These observations are in line with those recorded by Kamdi *et al.* (2012) who have been worked with two antagonists, two fungicides and two botanical extracts against *Fusarium oxysporum* f. sp. *ciceri* causing chickpea wilt in *in vivo* conditions and found that carbendazim seed treatment (@ 2g/ kg seed) gave minimum wilt incidence (26.38%) and maximum yield (13.47 qt/ha) followed by *T. viride* + Carbendanzim, *T. viride* + Thiram and *Trichoderma viride* alone.

Conclusion

Carbendazim and Thiram + carboxin among fungicides, garlic clove extract among plant extracts, *Trichoderma harzianum* among bioagents were proved highly effective in *in vitro* condition. Seed treatment with Carbendazim, Thiram + carboxin, garlic clove extract and *Trichoderma harzianum* were found most effective against wilt of chickpea *in vivo* condition.

Table 1: List of plant extracts tested against Fusarium oxysporum	f sp. <i>ciceri</i>	(in vitro)
--	---------------------	------------

S. No. Name of	Botanical Name	Plant part use	Concentration (per cent)		
S. 110.	Plant	Botaincai Name	Tiant part use	In vitro	In vivo
1.	Ginger	Gingiber officinale	Rhizomes	5 & 10	10
2.	Datura	Datura stramonium	Leaves	5 & 10	10
3.	Garlic	Allium sativum	Clove	5 & 10	10
4.	Neem	Azadirachta indica	Leaves	5 & 10	10
5.	Turmeric	Curcuma longa	Rhizomes	5 & 10	10
6.	Control	-	=		

Table 2 : List of fungicides tested against Fusarium oxysporum f.sp. ciceri (in vitro)

S. No.	Name of fungicide	Concentration (ppm) in vitro	Concentration (%) in vivo
1	Hexaconazole	50, 200 and 500	0.1
2	Thiophanate methyl	50, 200 and 500	0.2
3	Thiram + Carboxin	50, 200 and 500	0.1
4	Propiconazole	50, 200 and 500	0.1
5	Carbendazim	50, 200 and 500	0.1
6	Chlorothalonil	50, 200 and 500	0.1

Table 3 : List of treatments tested against *Fusarium oxysporum* f. sp. *ciceri* under *in vivo*

Treatment	Dose
Garlic clove	10%
Neem leaves	10%
Trichoderma harzianum	4g/kg
Trichoderma asperellum	4g/kg
Carbendazim	0.1%
Thiram + carboxin	0.1%
Control	

Table 4 : Efficacy of plant extracts against mycelial growth of *Fusarium oxysporum* f.sp. *ciceri* by poisoned food technique

Common name	Scientific name	Part used	Per cent inhibition of mycelial growth at different concentration*		
			5%	10%	Mean
Ginger	Gingiber officinale	Rhizomes	72.00	78.80	76.90 (61.20)
			(58.05)	(62.58)	(61.29)
Datura	Datura stramonium	Leaves	55.50	61.10	58.30
Datara	Bana snamonium	Leaves	(48.16)	(51.41)	(49.79)
Garlic	Allium sativum	Clove	78.75	100.00	84.38
Garne			(62.55)	(90.00)	(67.06)
Neem	Azadirachta indica	I	75.55	90.00	87.78
Neelli	Azaairacnia inaica	Leaves	(60.37)	(71.57)	(75.18)
Turmeric	C	Rhizomes	64.40	73.33	68.87
1 utilieric	Curcuma longa		(53.37)	(58.91)	(56.14)
Control			0.00	0.00	0.00
Connoi	_	-	(0.00)	(0.00)	(0.00)
			SEm ±	CD (p=0.05)	
	Plant extracts (P)		2.00	5.:	54
	Concentration (C)		1.13	3.12	
	PxC		1.95	5.41	

^{*}Average of three replications

Table 5 : Efficacy of bio-agents against mycelial growth of *Fusarium oxysporum* f. sp. *ciceri* by dual culture plate method

S. No.	Bio- agents	Inhibition of mycelial growth* (%)
1	T. harzianum	89.00 (70.63)
2	T. asperellum	84.75 (67.01)
3	Bacillus subtilis	68.34 (55.76)
4	Pseudomonas fluorescens	65.34 (53.93)
5	Control	0.00 (0.00)
	SEm ±	1.84
	CD (p=0.05)	5.66

^{*}Average of three replications

Figures given in parentheses are angular transformed values

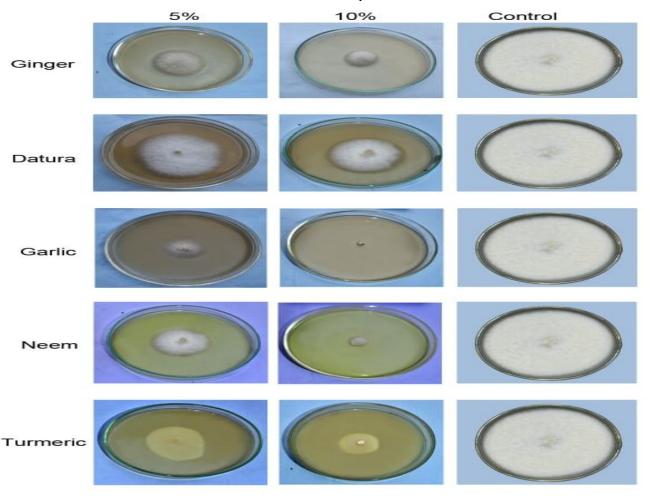
Table 6: Efficacy of fungicides against mycelial growth of Fusarium oxysporum f.sp. ciceri by poisoned food

technique

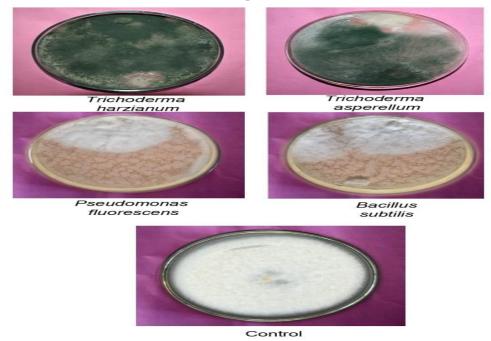
Fungicides		Per cent inhibition of mycelial growth at various concentrations* (ppm)			
Common name	Trade name	50	200	500	Mean
Hexaconazole	Sitara	72.00 (58.05)	85.55 (67.66)	95.50 (77.75)	84.35 (67.82)
Thiophanate methyl	Topsin-M	52.20	81.11	90.00	74.44
Throphunate mearyr	торын түг	(46.26)	(64.24)	(71.57)	(60.69)
Thiram+carboxin	Vitavax power	100.00 (90.00)	100.00 (90.00)	100.00 (90.00)	100.00 (90.00)
Propiconazole	Tilt	86.16 (68.16)	89.99 (71.56)	98.99 (84.23)	91.71 (74.65)
Carbendazim	Bavistin	100.00 (90.00)	100.00 (90.00)	100.00 (90.00)	100.00 (90.00)
Chlorothalonil	Kavach	47.70 (43.68)	62.22 (52.07)	80.55 (63.83)	63.49 (53.20)
Control	-	0.00	0.00	0.00	0.00
		(0.00)	(0.00) SEm ±	(0.00) CD (p=0.05)	(0.00)
	Fungicides (F)		2.00	5.60	
	Concentration (C)		0.57	1.60	
	FxC		0.99	2.77	

^{*}Average of three replications

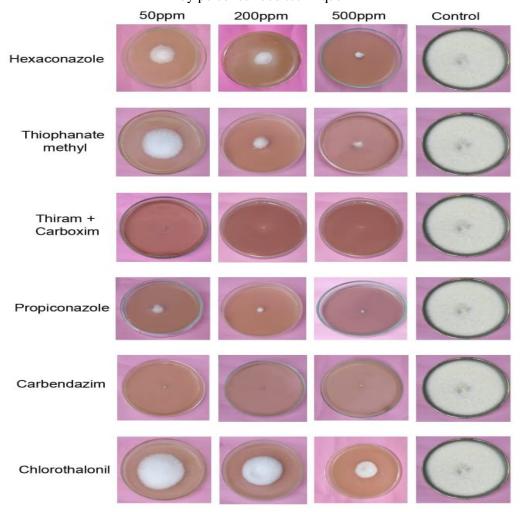
Table 7: Efficacy of plant extracts, bio-agents and fungicides against wilt of chickpea through seed treatment in pot conditions


Treatments	Dose	Disease incidence* (%) at 40 DAS	Disease control (%)
Carbendazim	0.1%	13.80 (21.77)	82.18
Thiram+carboxin	0.1%	15.75 (23.35)	79.74
T. harzianum	4g/kg	18.13 (25.18)	62.00
T. asperellum	4g/kg	26.75 (31.13)	51.36
Garlic clove extract	10%	20.00 (27.61)	58.27
Neem leaf extract	10%	24.80 (29.84)	53.33
Control		62.25 (52.07)	0.00 (0.00)
	SEm <u>+</u>	0.79	
	CD(p=0.05)	2.42	

^{*}Average of three replications DAS = days after sowing


Figures given in parentheses are angular transformed values

Figures given in parentheses are angular transformed values


PLATE 1 : Efficacy of plant extracts against mycelial growth of *Fusarium oxysporum* f.sp. *ciceri* by Poisoned Food Technique

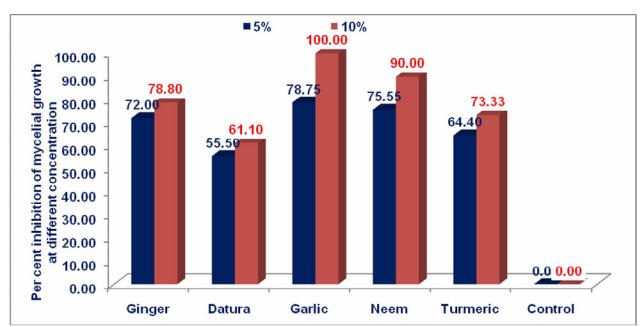


PLATE 2 : per cent inhibition of mycelial growth of *Fusarium oxysporum* f.sp. *ciceri* with biocontrol agents by dual culture plate method

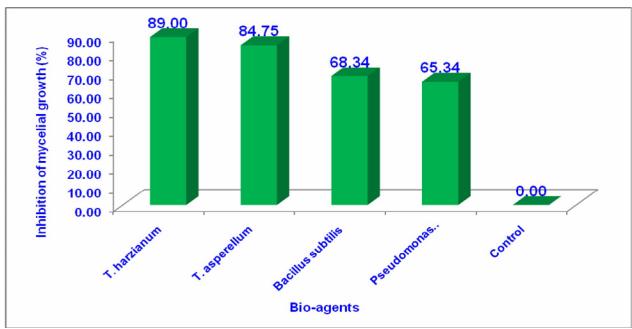
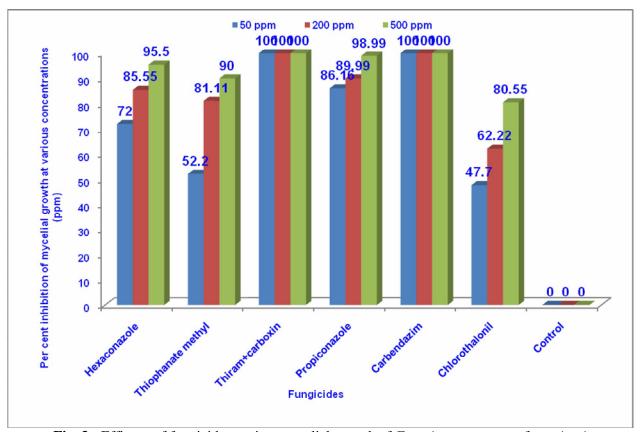


PLATE 3 : Efficacy of fungicides against mycelial growth of *Fusarium oxysporum* f.sp. *ciceri* by poisoned food technique



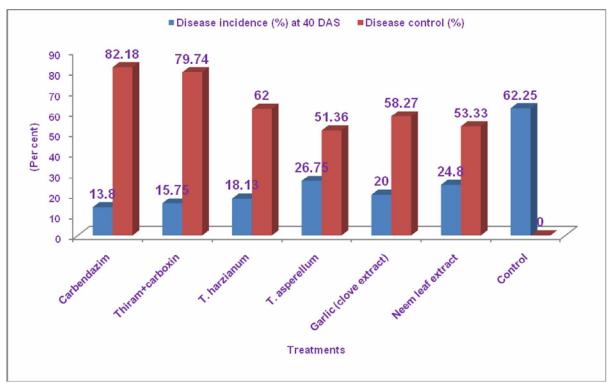

Fig. 1 : Efficacy of plant extracts against mycelial growth of *Fusarium oxysporum* f.sp. *ciceri* by Poisoned Food Technique on 7th day of incubation at 30± 1°C

Fig. 2 : Efficacy of bio-agents against mycelial growth of *Fusarium oxysporum* f.sp. *ciceri* by dual culture plate method on 7^{th} day at $30\pm1^{\circ}$ C

Fig. 3 : Efficacy of fungicides against mycelial growth of *Fusarium oxysporum* f.sp. *ciceri* by Poisoned Food Technique on 7^{th} day of incubation at $30\pm 1^{\circ}$ C

Fig. 4: Efficacy of plant extracts, bio-agents and fungicides against wilt of chickpea through seed treatment in pot conditions

References

- Dennis, C., Webstar, J. (1971). Antagonistic properties of species groups of *Trichoderma* II. Production of non-volatile antibiotics. *Trans. Br. Mycol. Soc.*, **57**, 41-48.
- Gangwar, R.K., Shalini, Singh, T.P., Verma, L.N., Gupta, N.K., Agarwal, N.K. (2013). Studies on the status of chickpea wilt in Rajasthan. *Agriways*. 1(1): 38-41.
- Gupta, S.K., Upadhyay, J.P., Ojha, K.H. (1997). Effect of fungicidal seed treatment on the incidence of chickpea wilt complex. Annals of Plant Protection Science, 5, 184-187
- Haware, M.P., Nene, Y.L., Rajeshwari, R. (1978). Eradication of *Fusarium oxysporium* f. sp. *ciceri* transmitted in chickpea seed. *Phytopathology*, **68**, 1364-1367.
- Jat, M.K., Ahir, R.R., Choudhary, S., Kakraliya, G.L. (2017). Management of coriander wilt using bio control agents. *International Journal of Chemical Studies*, 5(2), 523-525.
- Kamdi, D.R., Mondhe, M.K., Jadesha, G., Kshirsagar, D.N., Thakur, K.D. (2012). Efficacy of botanicals, bio-agents and fungicides against *Fusarium oxysporum* f. sp. *ciceri* in chickpea wilt sick plot. *Annals of Biological Research*. **3**(11), 5390-5392.
- Kumari, A., Kumar, R., Kumar, H. (2014). Efficacy of fungicides and *Trichoderma viride* against *Fusarium oxysporum* f. sp. *cubense in- vitro*. *The Bioscan.*, **9**(3), 1355-1358.

- Nene, Y.L., Shelia, V.K., Sharma, S.B. (1996). A world list of chickpea and pigeonpea pathogens *5th Edn*. Patancheru, Andhra Pradesh, India. ICRISAT, 1996; pp. 27.
- Patil, M., Gupta, O., Rathod, P.K. (2017). Morphological, cultural and pathogenic variation in races and variant of *F. oxysporum* f. sp. *ciceri* from seven locations of central zone of India. *IJAPSA*, 66-74.
- Raju, G.P., Rao, S.V.R., Gopal, K. (2008). In vitro evaluation of antagonists and fungicides against the red gram wilt pathogen Fusarium oxysporum f. sp. udam (Butler) Snyder and Hansen. Legume Research. 31(2),133-135.
- Rani, S.R. and Mane, S.S. (2014). Efficacy of bioagents against chickpea wilts pathogen. *I.J.A.B.P.T.*, **5**(4): 147-149.
- Thaware, D.S., Kohire, O.D., Gholve, V.M. (2016b). In vitro efficacy of fungal and bacterial antagonists against Fusarium oxysporum f. sp. ciceri causing chickpea wilt. International Journal of Agricultural Science, 12(2), 215-218
- Verma, S., Dhoroo, N.P. (2003). Evaluation of botanicals in vitro against Fusarium oxysporum f. sp. ciceris causing wilt of pea. Plant Disease Research, 18(2), 131–134.
- Vincent, J.M. (1947). The esters of 4-hydroxy benzoic acid and related compounds, methods for the study of their fungistatic properties. *J. Soc. Chem. Ind. Landan.* **16**, 746-755.